
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 578
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Modular Reduction Methods
Sattar J. Aboud, Edmond Prakash

Abstract— Present public-key schemes are relied mostly on arithmetic operations such as multiplication and exponentiation of large inte-
gers, ranging of 128-2048 binary bits. Carrying out calculation of the large length with multiple precisions is not quick and not easy to em-
ploy. Most algorithms base on modular reduction methods to decrease a length and complexity to perform their public-key scheme execu-
tions more efficiently. In this paper, we concentrate on three recognized modular reduction methods employed to decrease the modular op-
erations. These methods are the Classical, Barrett, and Montgomery. We study the application in an arithmetic exponentiation operation for
every method. Results are drawn regarding the accuracy, operation and complexity efficiency of the methods relies on the results achieved.

Index Terms— Barrett modular reduction, Classical modular reduction, Montgomery modular reduction

—————————— ——————————

1 INTRODUCTION

he public-key schemes need efficient algorithms of Carry-
ing out multiplication and exponentiation in pZ The effi-

ciency of the specific scheme will based on a number of fac-
tors, such as parameter length, time memory tradeoffs, hard-
ware and software optimization and arithmetical methods.
This paper is mainly concerned the arithmetic methods for
efficient performing these modular calculations. As modular
reduction of large numbers is the essential operation in public-
key schemes, efficient execution of this operation will allow
software executions to run quicker than formerly achievable.
The Classical, Barrett, and Montgomery methods are recog-
nized modular reduction methods for large integers employed
in public-key schemes. Every method has its own unique
properties resulting in a certain area of application. Below are
the illustrations of the methods with pseudo code.

2 THE EXISTING MODULA REDUCTION METHODS

There are three well-known algorithms for modular reduction
of large integers numbers used in public-key schemes. The
description of these methods is as follows:

2.1 Classical Modular Reduction
 Suppose z is any integer, so pz mod is a remainder in
rang []1,0 −p , z divided by p is called a modular reduction of
z with respect to modulus m . Therefore, both modular multi-

plication and multiple-precision are needed for carrying out
modular reduction. The most direct algorithm for carrying out
modular reduction is to calculate a reminder on division by p ,
using the multiple-precision division algorithm for example
algorithm 3. This is denoted as a classical algorithm for carry-
ing out modular multiplication. The following algorithms
needed to perform a classical modular reduction which is as
follows:

Algorithm 1: Classical modular multiplication
INPUT: two integers ga, and the modulus p , all in a radix
b representation

OUTPUT: pag mod
 Find ag using algorithm 2
 Find a remainder r if ag is divides by p using algorithm 3
 return)(r

Algorithm 2: Multiple-precision multiplication
INPUT: two integers ga, having 1+n and 1+t base b digits
respectively
OUTPUT: the product btn wwwag)...(011++= in the radix b rep-
resentation
 0(=ifor to dotn)1(++
 0:=iw ;
 0(=ifor to dot)
 begin
 0:=c ;
 0(=jfor to don)
 begin
 cgawuv ijjib ++= +)(;

 vw ji =+ : ;

 uc =: ;
 end
 uw ni =++ :1 ;
)...(011 wwwreturn tn ++

Algorithm 3: Multiple-precision division
INPUT: two integers bn aaaa)...(01= ; bt gggg)...(01= where

1≥≥ tn ; 0≠tg
OUTPUT: a quotient btn qqqq)...(01−= and remainder

bt rrrr)...(01= where grrqgx <≤+= 0,
 rqga +=: ; gr <≤0
 0(=jfor to dotn)−
 0:=jq ;

 dogbawhile tn)(−≥
 begin

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 579
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 1: += −− tntn qq ;

 tngbaa −−=: ;
 end ;
 nifor =(down))1(dotto +
 begin
 thengaif ti)(=
 1:1 −=−− bq ti
 else
 tiiti gabaq /)(: 11 −−− += ;

 doababagbgqwhile iiittti))((21
2

11 −−−−− ++>+
 1: 11 −= −−−− titi qq ;

 1
1: −−
−−−= ti

ti gbqaa ;
 thenaif)0(<
 begin

 1: −−+= tigbaa ;
 1: 11 −= −−−− titi qq ;
 end ;
 end ;
 ar =: ;
 end ;
);,(rqreturn
end .

2.2 Barrett Algorithm

 The Barrett method for modular reduction of large integers
is relied on a simple thought, like the way you make computa-
tion using the calculator. Barrett reduction (algorithm 4) finds

par mod= given a , and p . The algorithm needs the pre-

computation of the amount pb k /2=µ . It is beneficial when
many reductions are executed with a single modulus [1]. For
instance, every RSA encryption for one individual needs re-
duction modulo that individual's public key modulus. The
pre-computation takes a determined amount of work, which is
small in comparison to modular exponentiation cost. Normal-
ly, a radix b is selected to be close to the word-length of a pro-
cessor. Suppose 3>b in algorithm 4.

Algorithm4: Barrett modular reduction

INPUT: two integers bkbk ppppxaaa)...(,)...(0110112 −− ==

(with),01 ≠−kp and pb k /2=µ

OUTPUT: par mod=

 1
1 /: −= kbaq ;

 µ12 : qq = ;

 1
23 /: += kbqq ;

 1
1 mod: += kbar ;

 1
32 mod: += kbpqr ;

 21: rrr −= ;
 if 0<r then

 1: ++= kbrr ;
 while pr ≥ do
 prr −=: ;

)(rreturn ;

2.3 Montgomery Algorithm
 Montgomery reduction is the method which allows effi-
cient execution of modular multiplication without performing
a classical modular reduction step. Suppose p , d and f are
integers with pd > , 1),gcd(=dp and pdf <≤0 . The meth-

od for calculating pfd mod1− without using a classical method
of Algorithm 1 is called the Montgomery reduction of f mod-
ulo p with respect to d . With an appropriate selection of d ,
the Montgomery reduction can be efficiently calculated.
Let ga, are integers with pga <≤ ,0 . Let pada mod' =

where pgdg mod' = . A Montgomery reduction of '' ga is

pagdpdga modmod1'' =− . This remark is used in Algorithm
5 to give an efficient algorithm for a Montgomery reduction.

Algorithm 5: Montgomery reduction
INPUT: integers bn pppp)...(011−= with 1),gcd(=bm ,

bppbd n mod,, 1' −−== and pdtttf bn <= −)...(0112

OUTPUT: pfd mod1−
fh =: ;

0(=ifor donto))1(−
begin

 bpau ii mod: '= ;

 i
i pbuhh +=: ;

 ;end
 nbhh /:= ;

thenpHif)(≥
 phh −=: ;

)(hreturn ;
 end .

————————————————
• Sattar J. Aboud holds a PhD in Computing Systems and he is currently a

visiting Professor at Bedfordshire University, UK. E-mail: sat-
tar_aboud@yahoo.com

• Edmond Prakash holds a PhD in Computer engineering and he is currently
a director, Institute for research in applicable Computing in University of
Bedfordshire, UK, E-mail: Edmond.Prakash@beds.ac.uk

•

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 580
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

3 APPROACH

The three algorithms are used to calculate pa mod in terms of
addition, subtraction, multiplication, and single precision di-
vision of both single and multiple precision integers.

3.1 The Program Language
 Microsoft C++ was selected as a primary programming lan-
guage. C++ was chosen because of its portability, high execu-
tion speed, and appropriateness for carrying out large amount
of computational work. Development and time trials were
done on the Pentium Intel(R) core(TM) processor, i5 CPU, with
500 GB hard drive, and Windows 7 operating systems.

3.2 The Input/output Specifications
 INPUT: large integers read by variables from the batch file,
there were 20 numbers in every of the following ranges (128,
256, 512, 1024, and 2048 bits). The input numbers are generat-
ed pseudo-random in the decimal format and changed to hex-
adecimal to ensure that the right number of bits was employed
in the timing test. The input files hold an integer set that en-
counters the following input parameters for every of the
methods. The Barrett algorithm needed a pre-calculation
of pb k /2=µ before a modular reduction. The time needed to
achieve a calculation of µ was not included in a total time to
carry out a modular reduction. The classical, Barrett, and
Montgomery algorithms used the same input format

bkbk ppppaaaa)...(,)...(0110112 −− == , with 01 ≠−kp .
 OUTPUT: findings are written to a text file and included for
every input integer, the first integer in hexadecimal notation,
its length, the remainder px mod , the calculation time delta,
and the number of steps accepted during the process.

3.3 The Test Program
We use the same input for every of the three algorithms, while
the input was kept in different ways. We checked the outcome
for three algorithms versus the results of CBigInt and NTL
C++ libraries. Both libraries are able of working with random
size integer mathematics operations on large numbers. We
verify the performance of every method by measuring a time
needed for each run. The computational time is recorded as an
elapsed time between a start time and end time, using
Win32API function ()ntGetTickCou . The Win32 API

()ntGetTickCou was chosen due to ease of execution and over-
all accuracy to ms10 .

4 RESULTS
The following three tables show the results of the Classical
algorithm, Montgomery algorithm, and Barrett algorithm,
regarding the time needed for every run in secm

Table 1: Time needed for every run (secm) using Classical algorithm.

Table 2: Time needed for every run (secm) using Barrett algorithm

 128 256 512 1024 2048
1 0.00 10.00 10.00 50.00 180.0
2 0.00 10.00 20.00 50.00 160.0
3 0.00 0.00 10.00 50.00 170.0
4 0.00 0.00 20.00 50.00 160.0
5 0.00 0.00 10.00 40.00 180.0
6 10.00 0.00 20.00 50.00 180.0
7 0.00 10.00 10.00 60.00 170.0
8 0.00 10.00 20.00 40.00 170.0
9 10.00 0.00 20.00 50.00 170.0
10 0.00 0.00 10.00 60.00 160.0
11 0.00 10.00 20.00 50.00 170.0
12 10.00 0.00 10.00 50.00 170.0
13 0.00 10.00 20.00 50.00 180.0
14 0.00 10.00 10.00 40.00 160.0
15 0.00 0.00 20.00 50.00 170.0
16 0.00 0.00 10.00 50.00 180.0
17 10.00 0.00 10.00 40.00 170.0
18 10.00 0.00 20.00 40.00 170.0
19 0.00 10.00 20.00 50.00 100.0
20 0.00 0.00 20.00 50.00 160.0
Average 2.50 4.00 15.50 48.50 168.5

Table 3: Time needed for every run (secm) using Montgomery algorithm

 128 256 512 1024 2048
1 67.00 73.00 62.00 62.00 86.00
2 79.00 74.00 75.00 73.00 62.00
3 81.00 76.00 73.00 80.00 64.00
4 67.00 61.00 61.00 81.00 73.00
5 65.00 83.00 79.00 61.00 82.00
6 64.00 80.00 60.00 80.00 81.00
7 61.00 63.00 78.00 60.00 80.00

 128 256 512 1024 2048
1 5.00 49.00 59.00 96.00 99.00
2 4.00 46.00 63.00 92.00 159.00
3 6.00 41.00 51.00 79.00 163.00
4 5.00 37.00 61.00 104.00 170.00
5 7.00 32.00 61.00 97.00 161.00
6 9.00 27.00 59.00 97.00 170.00
7 4.00 50.00 63.00 93.00 165.00
8 5.00 55.00 60.00 91.00 180.00
9 9.00 41.00 47.00 93.00 143.00
10 6.00 40.00 52.00 102.00 162.00
11 7.00 48.00 59.00 96.00 163.00
12 9.00 39.00 72.00 94.00 169.00
13 7.00 54.00 50.00 99.00 163.00
14 8.00 53.00 67.00 97.00 170.00
15 5.00 38.00 64.00 91.00 161.00
16 4.00 22.00 58.00 84.00 162.00
17 8.00 26.00 50.00 81.00 166.00
18 7.00 41.00 64.00 86.00 178.00
19 7.00 52.00 55.00 97.00 93.00
20 5.00 33.00 58.00 101.00 141.00
Average 6.20 41.00 58.65 93.50 156.90

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 581
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

8 67.00 81.00 80.00 72.00 71.00
9 79.00 81.00 74.00 81.00 73.00
10 76.00 60.00 81.00 80.00 74.00
11 81.00 82.00 63.00 61.00 84.00
12 78.00 80.00 74.00 73.00 85.00
13 79.00 80.00 62.00 81.00 84.00
14 77.00 80.00 72.00 74.00 82.00
15 82.00 83.00 80.00 63.00 81.00
16 63.00 74.00 81.00 62.00 70.00
17 72.00 61.00 62.00 73.00 72.00
18 75.00 72.00 73.00 80.00 84.00
19 78.00 73.00 74.00 80.00 81.00
20 71.00 62.00 75.00 73.00 82.00
Average 73.10 74.00 71.55 72.50 76.00

5 ANALYSIS

The comparison of Classical, Barrett, and Montgomery meth-
ods is given below. Table 4 show the execution time needed for
all algorithms (secm)

 128 256 512 1024 2048
Classical 1.5 5.3 14.4 35.6 159.1
Barrett 4.7 33 45.2 82.1 145.5
Montgomery 74.8 73.7 70.6 71.6 76.2

• When a pre-computation, argument transformation, and
post-computation time is neglected, Barrett reduction algo-
rithm is a fastest, followed by classical and Montgomery,
for size lesser than 1024 bits. For size longer than 1024 bits,
Montgomery is about twice as quick as the Barrett method
and to some extent quicker than the classical.

• The Montgomery reduction method is almost the constant
line, demonstrating no dependency between an execution
time and a size. This is because of the truth that the Mont-
gomery reduction requires the modular multiplication of

1−d

despite the value of an argument [2].

• As showed in the outcome above, the three algorithms have
input by which they execute faster than an average. As
these inputs are dissimilar for every method, no algorithm
has the best carrying out for all inputs of the given size.

6 APPLICATIONS
The standard algorithm for performing the pz e mod modular
exponentiation is by using a recognized repeated square and
multiply algorithm [3]. The Left-to-Right type of this algo-
rithm includes repeated squaring and multiplying the result
by the determined value of z . If z has a particular formation,
the multiplication by the determined value is surely easier
than a multiplication of two random numbers. The computa-
tion of pz e mod can use arym − the Binary Square and multi-
ply algorithm [4]. It is reflected that for 16=m this decreases
an average number of modular multiplications to around

5/1 the bit numbers of e compared to Binary Square and mul-

tiply method is ½ [5]. Every of three reduction methods are
used in this execution, resulting in three modular exponentia-
tion methods. The pace difference between the reductions
methods are shown in pace differences between an exponenti-
ation functions. The performance of the reduction functions
with respect to the length of an argument will be shown in the
performance of an exponentiation functions. For the complete
size exponentiation the Montgomery typed exponentiation is
somewhat quicker than the Barrett typed exponentiation, in
turn being somewhat quicker than a classical one [6]. But, for
small sufficient arguments, a Barrett-typed exponentiation is
fastest of the three algorithms [7].

7 CONCLUSION
Three methods for modular reduction of large numbers were
illustrated and evaluated according to their accuracy, calcula-
tion operation and efficiency. When the time for pre-and post-
calculation and for m -residue alteration for Montgomery is
ignore, the Barrett algorithm is the best for case smaller than
1024 bits, where Montgomery is the best for case larger than
1024 bits. Every algorithm has its own characteristics proper
for the specific area of application. No single method gives the
great solution to encounter all demands; based on the milieu
by which calculation are to be executed, one algorithm can be
preferable over another. For single modular reductions, the
classical algorithm appears to be the best selection, as a pre-
and post-computations only contain very quick and direct
calculation. For small cases, classical and Barrett algorithms
are about equally quick, with minor better execution for Bar-
rett. For modular exponentiation, the exponentiation relies on
Montgomery’s method has the best execution.

ACKNOWLEDGMENT
The authors wish to thank the University of Bedfordshire, de-
partment of Computer science and Technolgy for its support
us financially.

REFERENCES
[1] Amiel F., Feix B., Tunstall M., Whelan C., and Marnane W., "Distin-

guishing Multiplications from Squaring Operations", Selected Areas
in Cryptography, LNCS 5381, pp. 346-360, 2008.

[2] Amiel F., Feix B., and Villegas K., "Power Analysis for Secret Recov-
ering and Reverse Engineering of Public Key Algorithms", Selected
Areas in Cryptography, LNCS 4876, pp. 110-125, 2007.

[3] Schmidt J., Tunstall M., Avanzi R., Kizhvatov I., and Oswald D.,
"Combined Implementation Attack Resistant Exponentiation",
LATINCRYPT 2010, LNCS 6212, pp. 305-322, 2010.

[4] Miroslav Kne!zevi c, Frederik Vercauteren, and Ingrid Verbau-
whede, "Faster Interleaved Modular Multiplication Based on Barrett
and Montgomery Reduction Methods", IEEE Transaction on Com-
puters, Volume 59, No. 12, December, pp. 1715-1721, 2010.

[5] Cao ZJ and Wu XJ, "An improvement of the Barrett modular reduc-
tion algorithm", International Journal of Computer Mathematics,
Taylor & Francis, 2013

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 582
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[6] Dupaquis V., and Venelli A., "Redundant Modular Reduction Algo-
rithms", Proceeding of CARDIS 2011, LNCS, 7079, Springer, pp. 102-
114, 2011.

[7] Zhengjun Cao1, Ruizhong Wei, and Xiaodong Lin, "A Fast Modular
Reduction Method", eprint.iacr.org/2014/040.pdf

IJSER

http://www.ijser.org/

	1 Introduction
	2 The Existing Modula Reduction Methods
	There are three well-known algorithms for modular reduction of large integers numbers used in public-key schemes. The description of these methods is as follows:
	2.1 Classical Modular Reduction
	2.2 Barrett Algorithm
	The Barrett method for modular reduction of large integers is relied on a simple thought, like the way you make computation using the calculator. Barrett reduction (algorithm 4) finds given, and. The algorithm needs the pre-computation of the amo...
	Algorithm4: Barrett modular reduction
	INPUT: two integers (withand
	2.3 Montgomery Algorithm

	3 Approach
	3.1 The Program Language
	3.2 The Input/output Specifications
	3.3 The Test Program

	4 Results
	5 Analysis
	The comparison of Classical, Barrett, and Montgomery methods is given below. Table 4 show the execution time needed for all algorithms ()

	6 Applications
	7 Conclusion
	Acknowledgment
	References

