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Abstract— Present public-key schemes are relied mostly on arithmetic operations such as multiplication and exponentiation of large inte-
gers, ranging of 128-2048 binary bits. Carrying out calculation of the large length with multiple precisions is not quick and not easy to em-
ploy. Most algorithms base on modular reduction methods to decrease a length and complexity to perform their public-key scheme execu-
tions more efficiently. In this paper, we concentrate on three recognized modular reduction methods employed to decrease the modular op-
erations. These methods are the Classical, Barrett, and Montgomery. We study the application in an arithmetic exponentiation operation for 
every method. Results are drawn regarding the accuracy, operation and complexity efficiency of the methods relies on the results achieved.  

 
Index Terms— Barrett modular reduction, Classical modular reduction, Montgomery modular reduction 

——————————      —————————— 

1 INTRODUCTION                                                                     

he public-key schemes need efficient algorithms of Carry-
ing out multiplication and exponentiation in pZ The effi-

ciency of the specific scheme will based on a number of fac-
tors, such as parameter length, time memory tradeoffs,  hard-
ware and software optimization and arithmetical methods. 
This paper is mainly concerned the arithmetic methods for 
efficient performing these modular calculations. As modular 
reduction of large numbers is the essential operation in public-
key schemes, efficient execution of this operation will allow 
software executions to run quicker than formerly achievable. 
The Classical, Barrett, and Montgomery methods are recog-
nized modular reduction methods for large integers employed 
in public-key schemes. Every method has its own unique 
properties resulting in a certain area of application. Below are 
the illustrations of the methods with pseudo code. 

2 THE EXISTING MODULA REDUCTION METHODS 

There are three well-known algorithms for modular reduction 
of large integers numbers used in public-key schemes. The 
description of these methods is as follows: 
 
2.1 Classical Modular Reduction 
     Suppose z is any integer, so pz mod is a remainder in 
rang [ ]1,0 −p , z  divided by p  is called a modular reduction of 
z with respect to modulus m . Therefore, both modular multi-

plication and multiple-precision are needed for carrying out 
modular reduction. The most direct algorithm for carrying out 
modular reduction is to calculate a reminder on division by p , 
using the multiple-precision division algorithm for example 
algorithm 3. This is denoted as a classical algorithm for carry-
ing out modular multiplication. The following algorithms 
needed to perform a classical modular reduction which is as 
follows: 
 
Algorithm 1: Classical modular multiplication 
INPUT: two integers ga, and the modulus p , all in a radix 
b representation 

OUTPUT: pag mod  
   Find ag using algorithm 2 
   Find a remainder r if ag is divides by p using algorithm 3 
   return )(r   
 
Algorithm 2: Multiple-precision multiplication 
INPUT: two integers ga, having 1+n and 1+t base b digits 
respectively 
OUTPUT: the product btn wwwag )...( 011++= in the radix b rep-
resentation 
   0( =ifor to dotn )1( ++  
      0:=iw ; 
    0( =ifor to dot)  
     begin  
       0:=c ; 
      0( =jfor to don)  
       begin  
         cgawuv ijjib ++= +)( ; 

         vw ji =+ : ; 

        uc =: ; 
      end  
      uw ni =++ :1 ; 
  )...( 011 wwwreturn tn ++  
 
Algorithm 3: Multiple-precision division 
INPUT: two integers bn aaaa )...( 01= ; bt gggg )...( 01=  where 

1≥≥ tn ; 0≠tg  
OUTPUT: a quotient btn qqqq )...( 01−= and remainder 

bt rrrr )...( 01= where grrqgx <≤+= 0,  
  rqga +=: ; gr <≤0  
  0( =jfor to dotn )−  
    0:=jq ; 

    dogbawhile tn )( −≥  
     begin  

T 
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       1: += −− tntn qq ; 

       tngbaa −−=: ; 
     end ; 
    nifor =( down ))1( dotto +  
     begin  
      thengaif ti )( =  
        1:1 −=−− bq ti  
      else  
         tiiti gabaq /)(: 11 −−− += ; 

      doababagbgqwhile iiittti ))(( 21
2

11 −−−−− ++>+  
         1: 11 −= −−−− titi qq ; 

       1
1: −−
−−−= ti

ti gbqaa ; 
      thenaif )0( <  
      begin  

       1: −−+= tigbaa ; 
       1: 11 −= −−−− titi qq ; 
      end ; 
     end ; 
    ar =: ; 
  end ; 
 );,( rqreturn  
end . 

 

2.2 Barrett Algorithm 

     The Barrett method for modular reduction of large integers 
is relied on a simple thought, like the way you make computa-
tion using the calculator. Barrett reduction (algorithm 4) finds 

par mod= given a , and p . The algorithm needs the pre-

computation of the amount  pb k /2=µ . It is beneficial when 
many reductions are executed with a single modulus [1]. For 
instance, every RSA encryption for one individual needs re-
duction modulo that individual's public key modulus. The 
pre-computation takes a determined amount of work, which is 
small in comparison to modular exponentiation cost. Normal-
ly, a radix b is selected to be close to the word-length of a pro-
cessor. Suppose 3>b in algorithm 4.  

Algorithm4: Barrett modular reduction 

INPUT:  two integers bkbk ppppxaaa )...(,)...( 0110112 −− ==  

(with ),01 ≠−kp and  pb k /2=µ  

OUTPUT: par mod=   

    1
1 /: −= kbaq ; 

   µ12 : qq = ; 

    1
23 /: += kbqq ; 

   1
1 mod: += kbar ; 

   1
32 mod: += kbpqr ; 

   21: rrr −= ; 
   if 0<r then  

     1: ++= kbrr ; 
 while pr ≥ do  
    prr −=: ; 

)(rreturn ; 

2.3 Montgomery Algorithm 
     Montgomery reduction is the method which allows effi-
cient execution of modular multiplication without performing 
a classical modular reduction step. Suppose p , d and f are 
integers with pd > , 1),gcd( =dp  and pdf <≤0 . The meth-

od for calculating pfd mod1− without using a classical method 
of Algorithm 1 is called the Montgomery reduction of f mod-
ulo p with respect to d . With an appropriate selection of d , 
the Montgomery reduction can be efficiently calculated. 
Let ga, are integers with pga <≤ ,0 . Let pada mod' =  

where pgdg mod' = . A Montgomery reduction of '' ga  is 

pagdpdga modmod1'' =− . This remark is used in Algorithm 
5 to give an efficient algorithm for a Montgomery reduction. 

 
Algorithm 5: Montgomery reduction 
INPUT: integers bn pppp )...( 011−=  with 1),gcd( =bm ,  

bppbd n mod,, 1' −−== and pdtttf bn <= − )...( 0112  

OUTPUT: pfd mod1−  
fh =: ;  

0( =ifor donto ))1( −  
begin  

  bpau ii mod: '= ; 

  i
i pbuhh +=: ; 

 ;end  
 nbhh /:= ; 

thenpHif )( ≥  
  phh −=: ; 

)(hreturn ; 
       end . 
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3 APPROACH 

The three algorithms are used to calculate pa mod  in terms of 
addition, subtraction, multiplication, and single precision di-
vision of both single and multiple precision integers. 
 
3.1 The Program Language 
     Microsoft C++ was selected as a primary programming lan-
guage. C++ was chosen because of its portability, high execu-
tion speed, and appropriateness for carrying out large amount 
of computational work. Development and time trials were 
done on the Pentium Intel(R) core(TM) processor, i5 CPU, with 
500 GB hard drive, and Windows 7 operating systems.  
 
3.2 The Input/output Specifications 
     INPUT: large integers read by variables from the batch file, 
there were 20 numbers in every of the following ranges (128, 
256, 512, 1024, and 2048 bits). The input numbers are generat-
ed pseudo-random in the decimal format and changed to hex-
adecimal to ensure that the right number of bits was employed 
in the timing test. The input files hold an integer set that en-
counters the following input parameters for every of the 
methods. The Barrett algorithm needed a pre-calculation 
of  pb k /2=µ  before a modular reduction. The time needed to 
achieve a calculation of µ was not included in a total time to 
carry out a modular reduction. The classical, Barrett, and 
Montgomery algorithms used the same input format 

bkbk ppppaaaa )...(,)...( 0110112 −− == , with 01 ≠−kp . 
     OUTPUT: findings are written to a text file and included for 
every input integer, the first integer in hexadecimal notation, 
its length, the remainder px mod , the calculation time delta, 
and the number of steps accepted during the process.  
 
3.3 The Test Program 
We use the same input for every of the three algorithms, while 
the input was kept in different ways. We checked the outcome 
for three algorithms versus the results of CBigInt  and NTL 
C++ libraries. Both libraries are able of working with random 
size integer mathematics operations on large numbers. We 
verify the performance of every method by measuring a time 
needed for each run. The computational time is recorded as an 
elapsed time between a start time and end time, using 
Win32API function ()ntGetTickCou . The Win32 API 

()ntGetTickCou was chosen due to ease of execution and over-
all accuracy to ms10 .  

4 RESULTS 
The following three tables show the results of the Classical 
algorithm, Montgomery algorithm, and Barrett algorithm, 
regarding the time needed for every run in secm  
 

Table 1: Time needed for every run ( secm ) using Classical algorithm. 

 
Table 2: Time needed for every run ( secm ) using Barrett algorithm 

 
                       128      256    512       1024       2048  
1  0.00  10.00  10.00  50.00  180.0  
2  0.00  10.00  20.00  50.00  160.0  
3  0.00  0.00  10.00  50.00  170.0  
4  0.00  0.00  20.00  50.00  160.0  
5  0.00  0.00  10.00  40.00  180.0  
6  10.00  0.00  20.00  50.00  180.0  
7  0.00  10.00  10.00  60.00  170.0  
8  0.00  10.00  20.00  40.00  170.0  
9  10.00  0.00  20.00  50.00  170.0  
10  0.00  0.00  10.00  60.00  160.0  
11  0.00  10.00  20.00  50.00  170.0  
12  10.00  0.00  10.00  50.00  170.0  
13  0.00  10.00  20.00  50.00  180.0  
14  0.00  10.00  10.00  40.00  160.0  
15  0.00  0.00  20.00  50.00  170.0  
16  0.00  0.00  10.00  50.00  180.0  
17  10.00  0.00  10.00  40.00  170.0  
18  10.00  0.00  20.00  40.00  170.0  
19  0.00  10.00  20.00  50.00  100.0  
20  0.00  0.00  20.00  50.00  160.0 
Average  2.50  4.00  15.50  48.50  168.5  

 
Table 3: Time needed for every run ( secm ) using Montgomery algorithm  

                         128         256      512   1024  2048  
1  67.00  73.00  62.00  62.00  86.00  
2  79.00  74.00  75.00  73.00  62.00  
3  81.00  76.00  73.00  80.00  64.00  
4  67.00  61.00  61.00  81.00  73.00  
5  65.00  83.00  79.00  61.00  82.00  
6  64.00  80.00  60.00  80.00  81.00  
7  61.00  63.00  78.00  60.00  80.00  

                                       128                                                                                                               256   512   1024    2048  
1  5.00  49.00  59.00  96.00  99.00  
2  4.00  46.00  63.00  92.00  159.00  
3  6.00  41.00  51.00  79.00  163.00  
4  5.00  37.00  61.00  104.00  170.00  
5  7.00  32.00  61.00  97.00  161.00  
6  9.00  27.00  59.00  97.00  170.00  
7  4.00  50.00  63.00  93.00  165.00  
8  5.00  55.00  60.00  91.00  180.00  
9  9.00  41.00  47.00  93.00  143.00  
10  6.00  40.00  52.00  102.00  162.00  
11  7.00  48.00  59.00  96.00  163.00  
12  9.00  39.00  72.00  94.00  169.00  
13  7.00  54.00  50.00  99.00  163.00  
14  8.00  53.00  67.00  97.00  170.00  
15  5.00  38.00  64.00  91.00  161.00  
16  4.00  22.00  58.00  84.00  162.00  
17  8.00  26.00  50.00  81.00  166.00  
18  7.00  41.00  64.00  86.00  178.00  
19  7.00  52.00  55.00  97.00  93.00  
20  5.00  33.00  58.00  101.00  141.00  
Average 6.20  41.00  58.65  93.50 156.90  
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8  67.00  81.00  80.00  72.00  71.00  
9  79.00  81.00  74.00  81.00  73.00  
10  76.00  60.00  81.00  80.00  74.00  
11  81.00  82.00  63.00  61.00  84.00  
12  78.00  80.00  74.00  73.00  85.00  
13  79.00  80.00  62.00  81.00  84.00  
14  77.00  80.00  72.00  74.00  82.00  
15  82.00  83.00  80.00  63.00  81.00  
16  63.00  74.00  81.00  62.00  70.00  
17  72.00  61.00  62.00  73.00  72.00  
18  75.00  72.00  73.00  80.00  84.00  
19  78.00  73.00  74.00  80.00  81.00  
20  71.00  62.00  75.00  73.00  82.00  
Average 73.10  74.00  71.55  72.50  76.00  

5 ANALYSIS 

The comparison of Classical, Barrett, and Montgomery meth-
ods is given below. Table 4 show the execution time needed for 
all algorithms ( secm ) 

                                    128     256     512  1024  2048  
Classical 1.5  5.3  14.4    35.6   159.1 
Barrett 4.7  33  45.2    82.1   145.5  
Montgomery 74.8  73.7  70.6    71.6   76.2  

• When a pre-computation, argument transformation, and 
post-computation time is neglected, Barrett reduction algo-
rithm is a fastest, followed by classical and Montgomery, 
for size lesser than 1024 bits. For size longer than 1024 bits, 
Montgomery is about twice as quick as the Barrett method 
and to some extent quicker than the classical.  

• The Montgomery reduction method is almost the constant 
line, demonstrating no dependency between an execution 
time and a size. This is because of the truth that the Mont-
gomery reduction requires the modular multiplication of 

1−d
 
despite the value of an argument [2].  

• As showed in the outcome above, the three algorithms have 
input by which they execute faster than an average. As 
these inputs are dissimilar for every method, no algorithm 
has the best carrying out for all inputs of the given size.  

6 APPLICATIONS 
The standard algorithm for performing the pz e mod modular 
exponentiation is by using a recognized repeated square and 
multiply algorithm [3]. The Left-to-Right type of this algo-
rithm includes repeated squaring and multiplying the result 
by the determined value of z . If z has a particular formation, 
the multiplication by the determined value is surely easier 
than a multiplication of two random numbers. The computa-
tion of pz e mod can use arym −  the Binary Square and multi-
ply algorithm [4]. It is reflected that for 16=m this decreases 
an average number of modular multiplications to around 

5/1 the bit numbers of e compared to Binary Square and mul-

tiply method is ½ [5]. Every of three reduction methods are 
used in this execution, resulting in three modular exponentia-
tion methods. The pace difference between the reductions 
methods are shown in pace differences between an exponenti-
ation functions. The performance of the reduction functions 
with respect to the length of an argument will be shown in the 
performance of an exponentiation functions. For the complete 
size exponentiation the Montgomery typed exponentiation is 
somewhat quicker than the Barrett typed exponentiation, in 
turn being somewhat quicker than a classical one [6]. But, for 
small sufficient arguments, a Barrett-typed exponentiation is 
fastest of the three algorithms [7]. 

7 CONCLUSION 
Three methods for modular reduction of large numbers were 
illustrated and evaluated according to their accuracy, calcula-
tion operation and efficiency. When the time for pre-and post-
calculation and for m -residue alteration for Montgomery is 
ignore, the Barrett algorithm is the best for case smaller than 
1024 bits, where Montgomery is the best for case larger than 
1024 bits. Every algorithm has its own characteristics proper 
for the specific area of application. No single method gives the 
great solution to encounter all demands; based on the milieu 
by which calculation are to be executed, one algorithm can be 
preferable over another. For single modular reductions, the 
classical algorithm appears to be the best selection, as a pre-
and post-computations only contain very quick and direct 
calculation. For small cases, classical and Barrett algorithms 
are about equally quick, with minor better execution for Bar-
rett. For modular exponentiation, the exponentiation relies on 
Montgomery’s method has the best execution.  
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